Systems of parameters

(Assume all rings are Noetherian)

Using the PIT, we get the following characterization of dimension of a local ring:

Prop: If R is a local ring w/ maximal ideal m, then dimR is the minimum d s.t. $\exists d$ elements $x_{1,...,x_d} \in m$ with $m^n \in (x_{1,...,x_d})$ for $n \ge 0$. (Or, equivalently, by the cor about local Artinian rings, m is minimal over $(x_{1,...,x_d})$.)

$$Pf: By PIT, dimR = codimm \leq d.$$

For the other inequality, set C = codimm = dim R. Then by the PIT converse, we can find

$$T = (x_1, \ldots, x_c) \subseteq \mathcal{M}$$

with m minimal over I. By minimality of d, we have $d \leq c = \dim R$. D

A sequence of elements as in the prop is called a system of parameters for R. More precisely:

Def: If (R, m) is local of divn d, x, ..., xd is a system

of parameters for R if any of the following equivalent conditions hold: 1.) In is minimal over $(x_1, ..., x_d)$

2.)
$$m^{n} \in (\pi_{1}, ..., \pi_{d})$$
 for $h > > 0$.
3.) $R'(\pi_{1}, ..., \pi_{d})$ is Artinian.
4.) $\sqrt{(\pi_{1}, ..., \pi_{d})} = m$ (since m is the only max'l ideal)
5.) $(\pi_{1}, ..., \pi_{d})$ is m-primary (since the only prime in $R'(\pi_{1}, ..., \pi_{d})$ is m, so it's the only ass. prime)

Regular local rings

let (R, m) be a local ring of dimension d. Then m can't be generated by fewer than d elements.

m is generated by exactly d elements (=) it's generated by a system of parameters. Such rings are called regular local rings.

Note that not all local rings are regular:

Ex:
$$R = k[x]_{(x^2)}$$
. Spec $R = (x)$, so R is local and
dim $R = 0$. Thus, x is not a s.o.p. for $m = (x)$, so R

is not regular.

Ex: Let
$$R = \begin{pmatrix} G[x,y] \\ (y^2 - x^3) \end{pmatrix}_{(x,y)}$$
.
 $m = (x,y)$ is not principal in R ,
but $(x,y)^2 = (x^2, xy, y^2) = (x^2, xy, x^3) \in (x)$
Thus, dim $R \leq 1$, but O is prime so dim $R = 1$. Thus
 R is not regular, and x is a system of parameters.

However, if you localize at any other max'l ideal, it will be negular (check!)

Prop: Regular local rings are integral domains.

Proof is tricky-see e.g. A-M.

Systems of parameters are related to the following:

Def: A sequence $x_{1,...,x_d}$ of elements in a ring R is an <u>R-sequence</u> or regular sequence if $(x_{1,...,x_d}) \neq R$ and for each i, x_{i+1} is a NZD on $\frac{R}{(x_{1,...,x_i})}$.

In general, order matters:

$$\begin{aligned}
\mathbf{\overline{5x}:} & \text{In } \mathbb{C}[x_{i}y_{i}z], & x_{i}y_{i}(1-x), & z(1-x) & \text{is a regular} \\
& \text{sequence:} \\
& \overline{y_{i}(1-x)} = \overline{y} & \text{in } \mathbb{C}[x_{i}y_{i}z]_{(x)} \\
& \text{and } (x_{i}y_{i}(1-x)) = (x_{i}y_{i}), & \text{so} \\
& \overline{z_{i}(1-x)} = \overline{z} & \text{in } \mathbb{C}[x_{i}y_{i}z]_{(x,y)}
\end{aligned}$$

However, y(1-x), z(1-x), z is not a regular sequence: z(1-x) is a zero divisor on C[x,y,z]/(y(1-x)).

In special situations, order doesn't matter:

Pf: For each i, the ring $R(x_1, ..., x_i)$ is local of dimension $\ge d - i$. Why? This follows from the following fact about f.g. modules over local rings:

Claim: If (R,m) is local and M a finitely generated

The max'l ideal of $R/(x_{1,...,x_{i}})$ is the image of $(x_{i+1},...,x_{d})$, so the dimension is at most, and thus equal to d-i. Thus it is regular and thus an integral domain.

The image of x_{i+1} in $\mathbb{P}(x_{1},...,x_{i})$ is nonzero (by minimality of generating set), so it's a NZD. \square

Discrete valuation rings (DVRs)

Def: A DVR is a regular local ring (R, m) of dimension I. If tem s.t. m=(t) (i.e. t is a s.o.p.), Then t is called a <u>uniformizing parameter</u> for R. (unique up to mult. by a unit)

Note: Regular local rings of dimension d correspond to "smooth" points Pespec R, where codim P = d. In the case d = l, P corresponds to a codimension one subscheme (or a closed point if spec R is a curve) and Rp is a DVR.

parameter, and K The field of fractions of R. Then every honzero $z \in K$ can be written uniquely as $z=ut^n$, where u is a unit in R, and $n \in \mathbb{R}$

Pf: First we show uniqueness: if $ut^n = vt^m$ and $n \ge m$, then $ut^{n-m} = V$, so t^{n-m} is a unit in R, so h = m and u = V.

Now, take $z \in K$. First we assume $z \in R$. Then if z is a unit in R, we're done. Otherwise $z \in (t)$, so $z = z_1 t$. If z_1 is a unit, we're done. Otherwise $z_1 = z_2 t$, and we get $z_1, z_2, ...$ with $z_n = z_{n+1} t$.

If some z_i is a unit, then $z_i = z_i t^i$, and we're done. Otherwise $(z_i) \in (z_2) \subseteq \cdots$, which stabilizes by Noeth. $\rightarrow (z_n) = (z_{n+1})$ some n, so $z_{n+1} = V z_n$, some veR.

=> Zn=Zn+1t=VZnt => vt=1, a contradiction.

Now for arbitrary $z \in K$, write $z = \frac{t}{s}$, $r, s \in R$. Then $r = ut^m$, $s = vt^n$, so $z = (\frac{u}{v})t^{m-n}$ and $\frac{u}{v}$ is a unit in R. \Box

Cor: The ideals of R are exactly (1) 2(t) 2(t²) 2.... In particular, R is a PID.

EX:
$$\binom{k[x,y]}{(y-x^2)}$$
 is a DVR. Its max'l ideal

is generated by $(x,y) = (x, x^{2}) = (x)$, so x is a uniformizing parameter.

Det: If R is a DVR with uniformiting parameter t and K = K(R), the valuation corresponding to R is the function $v : K^* \rightarrow \pi$ defined

$$Z = U t^{h} \longrightarrow h$$
.

Note that since any two uniformizing parameters differ by a unit, the valuation doesn't depend on choice of t.

If
$$z \in K$$
, then
 $v(z) \ge 0 \iff z \in R$
 $v(z) = 0 \iff z = mit$
 $v(z) > 0 \iff z \in (t).$

Moreover, if v(z) > 0, then $v(z) = \max \{n \mid z \in (t^n)\}$, and if v(z) < 0 then $v(\frac{1}{2}) > 0$, so the above applies.

We can extend the valuation to K by defining $v(o) = \infty$,

and get:

- √(ab) = V(a) + V(b) (so v: k*→Z is a group homomorphism)
- $V(a+b) \ge \min \{V(a), V(b)\}$ (exercise).

Connections to normality

Let R be an integral domain. Recall that R is normal if it is its own integral closure in its field of fractions K.

We can check normality of R by checking that certain localizations are DVRs:

Theorem: R is normal (=> for every prime PER associated to a principal ideal, Pp is principal.

We won't prove this, but recall that the associated primes of (f) include all primes minimal over (f) (and possibly more).

We know that for $P \neq 0$, $codim P \ge 1$ since we've in an int. domain. The condition that P_p is principal thus says that codim P = 1. R is normal (=> all primes associated to principal ideals have codim I and Rp is a DVR for all codim I primes.

This leads to the following very useful corollary: Cor: If R is normal then $R = \bigcap_{\substack{p \text{ prime}, \\ codimP=1}} R_p$. (Note that for any int. domain, $R = \bigcap_{\substack{p \text{ prime}}} R_p$). Pf: let K = K(R), ²/u & K. If ²/u & R, then a is not divisible by u. i.e. $a \notin (u)$. Thus, $a \neq 0$ in ^R/(u), so there is some (Associated!) prime P of (u) s.t. $a \neq 0$ in (R/(u))p. i.e. $a \notin (u)p$, so ²/u $\notin Rp$.

Thus, if ²/_u is in Rp for every Passociated to a principal ideal, then ²/_u ∈ R. By the theorem, all such P will have P_p principal and thus $\operatorname{codim} P_p = \operatorname{codim} P = 1$. \Box